Abstract

Within the present work, additive-free amorphous bulk SiHfN ceramics with excellent mechanical properties were prepared by a resource-efficient low-temperature molding method, namely warm-pressing. As densification mechanism viscous flow has been identified based on cross-linking reaction. The critical problems concerning gas evolution and crystallization inducing bloating and cracking are addressed through controlled thermolysis and pressure. The microstructural evolution of the SiHfN ceramics indicates that the incorporation of Hf in perhydropolysilazane not only increases the ceramic yield (97.4 wt%) and crystallization resistance (1300 °C), but also suppresses the transformation from α-Si3N4 to β-Si3N4 at high temperatures (1700 °C). Especially, HfN/α-Si3N4 nanocomposites converted by the SiHfN ceramics at 1500 °C show a slight weight loss of 3.13 wt%, indicating the high temperature resistance of the ceramic nanocomposites. The method proposed in this work opens a new strategy to fabricate additive-free polycrystalline Si3N4- and amorphous Si3N4-based (nano)composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call