Abstract

Polymer gels are cross-linked polymer networks swollen by a solvent. These cross-linked networks are interconnected to produce a three-dimensional molecular framework. It is this cross-linked network that provides solidity to the gel and helps to hold the solvent in place. The present work deals with the fabrication of polybenzoxazine carbon (PBzC)-based gels that could function as a solid electrode in flexible supercapacitors (SCs). With the advantage of molecular design flexibility, polybenzoxazine-based carbon containing different hetero-atoms was synthesized. A preliminary analysis of PBzC including XRD, Raman, XPS, and SEM confirmed the presence of hetero-atoms with varying pore structures. These PBz-carbons, upon reaction with polyvinyl alcohol (PVA) and acrylamide (AAm), produced a composite polymer hydrogel, PVA/poly (AAm)/PBzC. The performance of the synthesized hydrogel was analyzed using a three-electrode system. PVA/poly (AAm)/PBzC represented the working electrode. The inclusion of PBzC within the PVA/poly (AAm) matrix was evaluated by cyclic voltammetry and galvanostatic charge/discharge measurements. A substantial increase in the CV area and a longer charge/discharge time signified the importance of PBzC inclusion. The PVA/poly (AAm)/PBzC electrode exhibited larger specific capacitance (Cs) of 210 F g-1 at a current density of 0.5 A g-1 when compared with the PVA/poly (AAm) electrode [Cs = 92 F g-1]. These improvements suggest that the synthesized composite hydrogel can be used in flexible supercapacitors requiring light weight and wearability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.