Abstract

For efficient therapeutic use of human mesenchymal stem cells (hMSCs), maximizing their self-renewal performance and multipotency must be fully retained. However, conventional trypsin-based cell passaging methods are known to damage the attached cells to be detached because of the inherent corrosive nature of trypsin, and continuous passaging substantially degrades the self-renewal and differentiation capacity of hMSCs. Therefore, it is imperative to secure a damage-free passaging method that supports cell growth as well as their stem cell function. Here, an enzyme-free cell detachment method using a poly(ethylene glycol dimethacrylate) (pEGDMA)-coated surface is developed, which allows for reduced integrin-dependent cell adhesion. Cell detachment can be facilitated simply by treating the plated cells on the pEGDMA surface with Ca2+ and Mg2+-depleted DPBS. Spontaneous cell detachment occurs within 10 min with the full retention of the cell viability and proliferation ability of hMSCs. Especially, the detachment method can minimize the surface protein damage of hMSCs compared to the conventional trypsin treatment and preserve the self-renewal property and differentiation capacity even with an increased passage number over 10. The developed enzyme-free detachment method using the pEGDMA-coated surface is highly promising for a culture platform to broaden its application to the field of tissue engineering and regenerative medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.