Abstract
Progress in the field of soft devices-i.e., haptics, robotics, and human-machine interfaces (HRHMIs)-has its basis in the science of polymeric materials and chemical synthesis. However, in examining the relevant literature, we find that most developments have been enabled by off-the-shelf materials used either alone or as components of physical blends and composites. In this Progress Report, we take the position that a greater awareness of the capabilities of synthetic chemistry will accelerate the capabilities of HRHMIs. Conversely, an awareness of the applications sought by engineers working in this area may spark the development of new molecular designs and synthetic methodologies by chemists. We highlight several applications of active, stimuli-responsive polymers, which have demonstrated or shown potential use in HRHMIs. These materials share the fact that they are products of state-of-the-art synthetic techniques. The Progress Report is thus organized by the chemistry by which the materials were synthesized, including controlled radical polymerization, metal-mediated cross-coupling polymerization, ring-opening polymerization, various strategies for crosslinking, and hybrid approaches. These methods can afford polymers with multiple properties (i.e. conductivity, stimuli-responsiveness, self-healing and degradable abilities, biocompatibility, adhesiveness, and mechanical robustness) that are of great interest to scientists and engineers concerned with soft devices for human interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.