Abstract

This work focuses on optimizing the dispersion of nanosized ceramic particles for achieving higher dielectric constant, thereby higher capacitance density in polymer/ceramic nanocomposites. It has been observed that high solids loading leads to entrapment of porosity in the microstructure which lowers the effective dielectric constant of the films. The amount of solvent in the suspension and the speed at which spin coating was performed were found to impact the dielectric constant of high filler content nanocomposites. The interplay between the rheological properties of the suspension and processing parameters such as solvent content and coating speeds and its impact on the dielectric properties of the film are discussed. Porosity of thin film composites was measured for the first time to study the impact of these processing parameters. Powders of different particle sizes were mixed to obtain bimodal particle size distribution in order to increase the packing density of the composite. Packing density was improved by modifying the dispersion methodology. A nanocomposite with dielectric constant as high as 135 was obtained for the first time in the low-cost printed wiring board compatible epoxy system. A capacitance densities of /spl sim/35 nF/cm/sup 2/ on a nominal 3.5 micrometer films was achieved on PWB substrates with high yield. The manufacturability of these formulated nanocomposites and their applications as decoupling capacitors have been tested using a large area (300 mm /spl times/ 300 mm) system-on-package (SOP) chip-to-chip communication test vehicle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.