Abstract

Membranes with ultrafast molecular separation ability in organic solvents can offer unprecedented opportunities for efficient and low-cost solvent recovery in industry. Herein, a graphene-like polymer carbon nitride nanosheet (PCNN) with a low-friction surface was applied as the main membrane building block to boost the ultrafast transport of the solvent. Meanwhile, inspired by the concept of "couple hardness with softness", soft and flexible graphene oxide (GO) was chosen to fix the random stack of the rigid PCNN and tailor the lamellar structure of the PCNN membrane. The optimal PCNN/GO lamellar membrane shows a remarkable methanol permeance of 435.5 L m-2 h-1 bar-1 (four times higher than that of the GO membrane) while maintaining a high rejection for reactive black (RB, 98.9% in ethanol). Molecular dynamics simulations were conducted to elucidate the ultrafast transport mechanism of the PCNN/GO membrane. This study reveals that PCNN is a promising building block for lamellar membranes and may open up new avenues for high-performance molecular separation membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call