Abstract

We have measured the rate of capture of single molecules of sodium poly(styrene sulfonate) by α-hemolysin protein pore by varying applied voltage, pH, and the salt concentration asymmetry across the pore. We show that electrostatic interaction between the polyelectrolyte and the protein pore significantly affects the polymer capture rate in addition to the enhancement of drift arising from electrolyte concentration gradient. At higher pH values where the electrostatic interaction between the polymer and the α-hemolysin pore is repulsive, an antagonistic coupling with the drift induced by salt concentration gradient emerges. This antagonistic coupling results in a nonmonotonic dependence of the polymer capture rate on the salt concentration in the donor compartment. The coupling between the pore-polymer interaction and drift can be weakened by increasing the strength of the electric field that drives the polymer translocation. In contrast, at lower pH values where the polymer-pore interaction is attractive, a synergy with the additional drift from salt concentration asymmetry arises and the capture rate depends monotonically on the donor salt concentration. For higher pH, we identify two regimes for the enhancement of capture rate by salt concentration gradient: (a) drift-dominated regime, where the capture rate is roughly quadratic in the ratio of salt concentration in the receiver compartment to that in the donor compartment, and (b) antagonistic coupling regime at higher values of this ratio with a linear relation for the polymer capture rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.