Abstract

The current paper reports a novel model of a marine antibiofouling surface based on polymer brushes on a wrinkled silicone elastomer. Polymer brushes (POEGMA and PSPMA) were grafted via surface-initiated atom transfer radical polymerization (SI-ATRP). Successful grafting was verified with various characterization techniques including infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements. A series of laboratory static and dynamic bioassays as well as field immersion tests were carried out to systematically investigate the relationship between surface chemistry, surface topography and antifouling properties. The results indicated that the adhesion of marine organisms was strongly influenced by the surface chemistry composition and surface topography structure. The synergistic effect of the surface chemistry, surface topography and bulk properties of the substrates endowed the new marine coatings with excellent antifouling properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.