Abstract

This review highlight approaches to the formation of an ordered distribution of conductive filler in polymer blends. This distribution leads to a significant decrease of the percolation threshold in the polymer mixture, i.e. to a decrease in the critical concentration of the filler, at which the transition of the system from a non-conductive to a conductive state occurs. This improves the mechanical properties of the composition and its processability. It is shown that the ordered structure of the filler is formed in the polymer blend upon mixing the components in the melt under the action of three factors - thermodynamic (the ratio between the values of the interfacial tension of the filler-polymer A and filler-polymer B, as well as between polymers A and B), kinetic (the ratio between viscosities of polymer components A and B) and technological (the intensity and temperature of processing, as well as the order of introduction of a filler into a heterogeneous polymer matrix, which can enhance or suppress the effect of thermodynamic or kinetic factors). On the example of the works performed by the author on mixtures of thermoplastics filled with electrically conductive carbon fillers such as carbon black and carbon nanotubes, as well as a metal filler - dispersed iron, with the involvement of literature data on filled polymer blends, the influence of each of the factors on the formation of an ordered structure of the conducting phase in polymer blends is shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.