Abstract

Bioorthogonal catalysis offers a unique strategy to modulate biological processes through the in situ generation of therapeutic agents. However, the direct application of bioorthogonal transition metal catalysts (TMCs) in complex media poses numerous challenges due to issues of limited biocompatibility, poor water solubility, and catalyst deactivation in biological environments. We report here the creation of catalytic "polyzymes", comprised of self-assembled polymer nanoparticles engineered to encapsulate lipophilic TMCs. The incorporation of catalysts into these nanoparticle scaffolds creates water-soluble constructs that provide a protective environment for the catalyst. The potential therapeutic utility of these nanozymes was demonstrated through antimicrobial studies in which a cationic nanozyme was able to penetrate into biofilms and eradicate embedded bacteria through the bioorthogonal activation of a pro-antibiotic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call