Abstract

It has been a widely-known and intractable issue due to very rapid degradation of tin (Sn) based organic-inorganic hybrid perovskites (OIHPs). To incorporate organic chain polymers into the OIHPs based photo-active polycrystalline films seems to be a unique strategy to passivate naturally formed defects at grain boundaries and surfaces, to prevent surface oxidation, and consequently, to optimize photovoltaic performance, as well as to tackle with device instability. In this work, a Lewis-type organic insulating polymer, polymethylmethacrylate (PMMA), was utilized as an effective additive in formamidinium tin tri-iodide (FASnI3) precursor solutions, and the corresponding solid films were made by a one-step processing method. By tuning different concentrations of PMMA, the solar cells have exhibited remarkable improvements of and FF by comparing with a control device without PMMA. The role of PMMA is functional for surface morphology optimization, trap density reduction and current density–voltage (J–V) hysteresis elimination. As a result, it is helpful to effectively impede degradation speeds of FASnI3 based solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.