Abstract

Polyethylenimine (PEI) is receiving increasing attention as a gene carrier with high transfection efficiency. However, its high charge density and cytotoxic effects limit its application. Polylysine (PLL) is another polymeric gene carrier with good biodegradability and biocompatibility, although its lack of endosomal escape ability strongly impairs its transfection efficiency. In this study, PLL was introduced to PEI by ring-opening polymerization of ε-benzyloxycarbonyl-l-lysine N-carboxyanhydride, followed by deprotection of carbobenzyloxy groups. As-prepared PEI-PLL multiarm hyperbranched copolymers were characterized as gene carriers in vitro by measuring their particle size, zeta potential, cytotoxicity, transfection efficiency, and cell internalization. The optimum transfected efficiency of PEI-PLL was nearly seven times higher than that of PEI with a molecular weight of 25kDa. Furthermore, pKH3-rev-casp-3 plasmid DNA was used as a gene for anti-tumor treatment in a xenograft model using nude mice. Compared with 25kDa PEI, PEI-PLL exhibited better tumor inhibition effects in 23days. In addition, terminal deoxynucleotidyl transferase dUTP nick end labeling, immunohistochemistry, and western blot analysis were used to determine the anti-tumor mechanism of PEI-PLL. The results showed that tumor cell apoptosis led to tumor inhibition, which could be attributed to pKH3-rev-casp-3 inducing poly(ADP-ribose) polymerase-1 cleavage. PEI-PLL is a promising gene carrier candidate for further application in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.