Abstract

Poly-lactide-co-glycolide nanoparticles (207–605 nm) containing voriconazole (VNPs) were developed using a multiple-emulsification technique and were also made porous during preparation in presence of an effervescent mixture for improved pulmonary delivery. Pulmonary deposition of the particles was studied using a customized inhalation chamber. VNPs had a maximum of 30% (w/w) drug loading and a zeta potential (ZP) value around −20 mV. In the initial 2 hours, 20% of the drug was released from VNPs, followed by sustained release for 15 days. Porous particles had a lower mass median aerodynamic diameter (MMAD) than nonporous particles. Porous particles produced the highest initial drug deposition (~120 μg/g of tissue). The drug was detectable in lungs until 7 days and 5 days after administration, for porous and nonporous particles, respectively. VNPs with improved drug loading were successfully delivered to murine lungs. Porous nanoparticles with lower MMADs showed better pulmonary deposition and sustained presence in lungs. From the Clinical EditorIn this paper, voriconazole-containing porous nanoparticles were studied for inhalational delivery to lung infections in a murine model, demonstrating prolonged half-life and improved pulmonary deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.