Abstract

Several groups have shown that vaccine antigens can be encapsulated within polymeric microparticles and can serve as potent antigen delivery systems. We have recently shown that an alternative approach involving charged polylactide co-glycolide (PLG) microparticles with surface adsorbed antigen(s) can also be used to deliver antigen into antigen presenting cell (APC). We have described the preparation of cationic and anionic PLG microparticles which have been used to adsorb a variety of agents, which include plasmid DNA, recombinant proteins and adjuvant active oligonucleotides. These PLG microparticles were prepared using a w/o/w solvent evaporation process in the presence of the anionic surfactants, including DSS (dioctyl sodium sulfosuccinate) or cationic surfactants, including CTAB (hexadecyl trimethyl ammonium bromide). Antigen binding to the charged PLG microparticles was influenced by several factors including electrostatic and hydrophobic interactions. These microparticle based formulations resulted in the induction of significantly enhanced immune responses in comparison to alum. The surface adsorbed microparticle formulation offers an alternative and novel way of delivering antigens in a vaccine formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.