Abstract

Large amounts of stable β-anhydrite II (AII), a specific type of dehydrated gypsum and a by-product of lactic acid production process, can be melt-blended with bio-sourced and biodegradable polylactide (PLA) to produce economically interesting novel composites with high tensile strength and thermal stability. To enhance their toughness, while preserving an optimal stiffness, selected low molecular weight plasticizers (bis(2-ethylhexyl) adipate and glyceryl triacetate) and polymeric adipates with different molecular weights have been mixed with a specific PLA ( l/ d isomer ratio of 96/4) and 40 wt% of AII using an internal kneader. Addition of up to 10 wt% plasticizer into these highly filled compositions can trigger a fourfold increase of the impact strength with respect to the compositions without any modifier, cold crystallization properties and a significant decrease of their glass transition temperature. Moreover, these ternary compositions (PLA–AII–plasticizer) are clearly characterized by easier processing, notable thermo-mechanical performances and good filler dispersion. This study represents a new approach in formulating novel melt-processable polyester grades with improved characteristic features using PLA as biodegradable polymer matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.