Abstract

AbstractThe mechanical properties and morphology of poly(L‐lactide) fibers, prepared by the dry spinning–hot drawing process using different nonsolvent/chloroform spinning solutions, were studied in relation to fiber in vitro degradability. Acetone, methanol, ethanol, and cyclohexane were used as nonsolvents in the spinning mixture with as‐polymerized PLLA, i.e., PLLA containing 10% of residual L‐lactide. The tensile strength, structure, and degradability of obtained fibers were mainly governed by the nonsolvent volatility. Generally, the higher the volatility, the higher the strength, and the faster the degradation. The acetone/chloroform spinning system produced fiber with an increased degradation rate in comparison to the pure chloroform spinning system. © 1994 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call