Abstract

Bionanocomposites from polylactic acid (PLA) filled with unmodified nanocrystalline cellulose from TEMPO-oxidized oil palm empty fruit bunch (OPEFB-NCC) at various loading levels were fabricated using the solvent casting technique. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATF-FTIR), differential scanning calorimetry (DSC), and mechanical analyses were used to characterize the bionanocomposite films. FTIR suggested that the incorporation of the OPEFB-NCC was based on physical interaction. The melting temperature did not change markedly except at higher OPEFB-NCC additions, while the crystallization temperature shifted to lower temperatures and crystallinity increased with increasing OPEFB-NCC content.The SEM of cryo-fractured films indicated a rather weak compatibility between the OPEFB-NCC and PLA, resulting in the decrease of both the modulus and the tensile strength of the bionanocomposite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.