Abstract

AbstractNew linear triblock thermoplastic elastomers (TPEs) comprising a rubbery polyisobutylene (PIB) midblock flanked by two glassy endblocks of various styrenic polymers have been synthesized by living carbocationic polymerization by sequential monomer addition. First isobutylene (IB) was polymerized by a bifunctional tert‐ether (dicumyl methyl ether) initiator in conjunction with TiCl4 coinitiator in CH3Cl/methylcyclohexane (MeCHx) (40/60 v/v) solvent mixtures at −80°C. After the living narrow molecular weight distribution PIB midblock ($\[\bar M_n\]$ = 1.1–1.2) has reached the desired molecular weight, the styrenic monomers together with an electron pair donor (ED) and a proton trap (di‐tert‐butylpyridine, DtBP) were added to start the blocking of the glassy segments from the living ⊕PIB⊕ chain ends. While p‐methylstyrene (pMeSt), p‐t‐butylstyrene (ptBuSt) and indene (In) gave essentially 100% blocking to the corresponding glassy endblocks, the blocking of 2,4,6‐trimethylstyrene (TMeSt) and α‐methylstyrene (αMeSt) were ineffective. Uncontrolled initiation by protic impurities was prevented by the use of DtBP. In the simultaneous presence of DtBP and the strong ED N,N‐dimethylacetamide (DMA), TPEs with good mechanical properties (10–20 MPa tensile strength, 300–600% elongation) were prepared. The products exhibit a low and a high temperature Tg characteristic of phase separated rubbery and glassy domains. The service temperature of these new TPEs exceeds that of PSt–PIB–PSt triblock copolymers due to the higher Tgs (PpMeSt = 108, PptBuSt = 142 and PIn = 220–240°C) of the outer blocks. The Tg of the glassy blocks can be regulated by copolymerizing two styrene derivatives; a triblock copolymer with outer blocks of poly(pt‐butylstyrene‐co‐indene) showed a single glassy transition Tg = +165°C, i.e., in between that of PptBuSt and PIn. Virgin TPEs have been repeatedly compression molded without deterioration of physical properties. The high melt flow index obtained with a TPE containing PptBuSt endblocks suggests superior processability relative to those with PSt end‐blocks. The tensile strength retention at 60°C of the former TPE is far superior to that of a PSt–PIB–PSt triblock of similar composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.