Abstract

Interpenetrating polymer networks (IPNs) combining polyisobutene (PIB) and poly(methyl methacrylate) (PMMA) networks were prepared using a in situ strategy. PIB networks were formed by isocyanate—alcohol addition between the hydroxyl end groups of telechelic dihydroxy-polyisobutene and an isocyanate cross-linker, catalyzed by dibutyltindilaurate (DBTDL). PMMA networks were obtained from free-radical co-polymerization of methyl methacrylate (MMA) with ethylene glycol bismethacrylate (EGDM) in the presence of dicyclohexyl peroxydicarbonate (DCPD) as the initiator. The synthesis of each network during the IPN formation was followed by FTIR spectroscopy. The highest degree of interpenetration is obtained by forming the PIB network first. The corresponding transparent IPNs exhibit two mechanical relaxation temperatures as determined by Dynamic mechanical thermal analysis (DMTA), corresponding to those of PMMA and PIB enriched phases. Mechanical properties of PIB networks are tremendously improved by the presence of PMMA network in such IPN architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.