Abstract

There is substantial urgency to create artificial light-harvesting systems that are relatively inexpensive and capable of absorbing a significant fraction of the solar spectrum. Molecular materials possess a number of attractive characteristics for this purpose, such as their light weight, spectral tunability, and the potential to use self-assembly to form large structures capable of executing multiple photophysical processes required for photoelectric energy conversion. In this work, we demonstrate that ionically assembled complexes composed of oppositely charged conjugated polyelectrolytes (CPEs) that function as excitonic donor/acceptor pairs possess 10 significant potential as artificial energy transfer antennae. We find that, upon complexation in water, excitation energy is transferred from the donor to the acceptor CPE in less than 250 fs—a timescale that is competitive with natural light-harvesting antennae. We further find that the state of CPE chain extension and thus spatial delocalization of th...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.