Abstract

To solve the sedimentation drawback of soft-magnetic carbonyl-iron (CI) particles for their application to a magneto-rheological (MR) fluid, the coating of a polyindole (PIn) onto the surfaces of CI microspheres was introduced through chemical oxidization polymerization using 4-aminobenzoic acid as a grafting chemical to increase the interaction between CI particles and PIn. The coated morphology was confirmed using a scanning electron microscope, whereas the reduced density was examined through a gas pycnometer. The effect of the coating on MR performance was analyzed using a rotation rheometer connected with a magnetic field generator. Based on the results of a dynamic oscillation rheological test, the CI/PIn-based MR fluid exhibited a more elastically solid behavior with the applied magnetic fields when compared to a pure CI-based MR suspension, showing an increased magnetic-field strength-dependent storage modulus from a strain sweep test. With a solid-like behavior under an applied external magnetic field, the storage modulus was observed to be higher than the loss modulus within the entire frequency range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.