Abstract

AbstractPolyimide (PI) nanocomposites prepared by the in situ generation of crosslinked organosilicon nanophase (ON) through the sol‐gel process were characterized by densities, thermally stimulated depolarization currents and dielectric relaxation spectroscopy.Both a looser molecular packing of PI chain fragments adjacent to the ON and a loose inner structure of the spatial aggregates of ON were assumed to be responsible for a non‐additive decrease of the experimental values of dielectric permittivity for the nanocomposites. The pattern of composition dependence of the apparent dielectric permittivity of the ON suggested a probability of a morphological change around the composition PAAS/MTS = 100/16 (presumably, a sort of percolation transition from small‐size, individual clusters into large‐size, infinite clusters). Thus, PI reinforced with the sol‐gel derived nanophase may have a reasonably good potential as low dielectric permittivity materials. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call