Abstract

Metallized polymer films (MPFs) with superior self-healing properties are extremely attractive for application in energy storage capacitors. Self-healing behaviors allow MPFs to keep insulating between the local electrical breakdown region and the electrode, thereby reserving long-term operational viability of the capacitors. Polyimide (PI) is a type of well-developed polymer material with excellent mechanical and thermal stabilities, but it is deficient in intrinsic self-healing capabilities. This work reports a facile surface engineering strategy to endow metalized PI films with self-healing capabilities. By simple immersion of bare PI films in the solution of epoxy resin (ER) accompanied by curing of ER, PI films impregnated with ER (P-E films) not only show enhanced dielectric characteristics but also obtain excellent self-healing abilities upon multiple cycles of electrical breakdowns, even at a high temperature. For example, in comparison to bare PI films, PI films impregnated in ER solution with a solid content of 1 wt % (P-1%E) display improved initial Weibull breakdown strength (αb1 of 353.0 versus 310.9 kV/mm), maximum discharging energy density (Ud of 2.1836 versus 0.8254 J/cm3), and charging/discharging efficiency (η of 95.72 versus 55.19%) at 150 °C. After 5 breakdown cycles, P-1%E films could maintain a much higher breakdown strength (αb5 of 338.1 versus 21.3 kV/mm). When subjected to a constant electrical strength of 350 kV/mm at 150 °C, P-1%E films show merely <6% decline in both Ud and η values after 5 breakdown cycles. On the contrary, bare PI films would undergo dramatic performance decay after 1 or 2 breakdowns under similar conditions. In view of their outstanding self-healing properties at a high temperature, P-E films can serve as a promising candidate to fabricate thermally stable MPF capacitors for long-term operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call