Abstract

In this work, we report a facile and efficient approach to overcome the poor dispersion of MoS2 nanoflowers in polyimide (PI) by carefully grafting them onto the surface of hollow carbon nanofibers (HCNF). The obtained MoS2@HCNF hybrid was then utilized as homogeneous filler to enhance the tensile strength and lubricity of the PI-based protective coating. The results revealed that the tensile strength can be effectively improved by 46% accompanying with a slight decrease in elongation (19%) after the incorporation of 2.0wt% MoS2@HCNF. Furthermore, the MoS2@HCNF/PI composite coatings also manifested outstanding anti-wear and friction reduction characteristics under the lubrication conditions of water (0.5wt%, 72.5% reduction in wear rate) and liquid paraffin oil (1.5wt%, 56% reduction in wear rate), demonstrating that the formed stable MoS2@HCNF hybrid could collaboratively alleviate the wear caused by the friction shear force in PI matrix through water or oil medium. The outstandingly enhanced behaviors of MoS2@HCNF hybrid suggest its potential application as the novel filler in anti-wear composite coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.