Abstract

Derivatives of C(60) have been shown to be effective free radical scavengers. Hence, many of the biological functions of fullerene are believed to be due to their antioxidant properties. Here we present evidence to show that fullerenols, that are caged fullerene oxides, exert their neuroprotective functions by blocking glutamate receptors and lowering the intracellular calcium, [Ca(2+)](i). In neuronal cultures, fullerenols reduce glutamate-induced neurotoxicity by about 80% at 50microM. No significant effect was observed on H(2)O(2)/Fe(2+)-induced neurotoxicity under the same conditions. Fullerenols were found to inhibit glutamate receptor binding in a dose-dependent manner inhibiting 50% of glutamate binding at 50 microM. Furthermore, AMPA receptors were found to be more sensitive to fullerenols than NMDA and KA receptors. On the other hand, GABA(A) receptors and taurine receptors were not significantly affected by fullerenols at the same concentrations used, suggesting that fullerenols inhibit primarily the glutamate receptors. In addition, fullerenols were also found to lower glutamate (Glu) receptor-induced elevation of [Ca(2+)](i), suggesting that the underlying mechanism of neuronal protective function of fullerenols is likely due to its ability to block the glutamate receptors and to reduce the level of [Ca(2+)](i).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.