Abstract
Polyhydroxyalkanoates (PHAs) are natural polyesters produced by microorganisms as a source of intracellular energy reserves. Due to their desirable material characteristics, these polymers have been thoroughly investigated for tissue engineering and drug delivery applications. A tissue engineering scaffold serves as a substitute of the native extracellular matrix (ECM) and plays a crucial role in tissue regeneration by providing temporary support for cells during natural ECM formation. In this study, porous, biodegradable scaffolds were prepared using native polyhydroxybutyrate (PHB) and PHB in nanoparticulate form using salt leaching method, to investigate the differences in the physicochemical properties such as crystallinity, hydrophobicity, surface morphology, roughness, and surface area and biological properties of the prepared scaffolds. As per the BET analysis, PHB nanoparticles-based (PHBN) scaffolds presented a significant difference in the surface area as compare to PHB scaffolds. PHBN scaffolds showed decreased crystallinity and improved mechanical strength as compared to PHB scaffolds. Thermogravimetry analysis shows delayed degradation of PHBN scaffolds. An examination of Vero cell lines' cell viability and adhesion over time revealed enhanced performance of PHBN scaffolds. Our research suggests that scaffold made of PHB nanoparticles could serve as a superior material for tissue engineering applications than its native form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.