Abstract

Anaerobic oxidation of methane (AOM) is an important microbial process mitigating methane (CH4) emission from natural sediments. Anaerobic methanotrophic archaea (ANME) have been shown to mediate AOM coupled to the reduction of several compounds, either directly (i.e. nitrate, metal oxides) or in consortia with syntrophic bacterial partners (i.e. sulfate). However, the mechanisms underlying extracellular electron transfer (EET) between ANME and their bacterial partners or external electron acceptors are poorly understood. In this study, we investigated electron and carbon flow for an anaerobic methanotrophic consortium dominated by ‘Candidatus Methanoperedens nitroreducens’ in a CH4-fed microbial electrolysis cell (MEC). Acetate was identified as a likely intermediate for the methanotrophic consortium, which stimulated the growth of the known electroactive genus Geobacter. Electrochemical characterization, stoichiometric calculations of the system, along with stable isotope-based assays, revealed that acetate was not produced from CH4 directly. In the absence of CH4, current was still generated and the microbial community remained largely unchanged. A substantial portion of the generated current in the absence of CH4 was linked to the oxidation of the intracellular polyhydroxybutyrate (PHB) and the breakdown of extracellular polymeric substances (EPSs). The ability of ‘Ca. M. nitroreducens’ to use stored PHB as a carbon and energy source, and its ability to donate acetate as a diffusible electron carrier expands the known metabolic diversity of this lineage that likely underpins its success in natural systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.