Abstract

Burkholderia sp. accumulates polyhydrox-yalkanoates (PHAs) containing 3-hydroxybutyrate and 3-hydroxy-4-pentenoic acid when grown on mineral media under limited phosphate or nitrogen, and using sucrose or gluconate as a carbon and energy source. Solvent fractionation and NMR spectroscopic characterization of these polyesters revealed the simultaneous accumulation of two homopolyesters rather than a co-polyester with random sequence distribution of the monomers [Valentin HE, Berger PA, Gruys KJ, Rodrigues MFA, Steinbuchel A, Tran M, Asrar J (1999) Macromolecules 32: 7389-7395]. To understand the genetic requirements for such unusual polyester accumulation, we probed total genomic DNA from Burkholderia sp. by Southern hybridization experiments using phaC-specific probes. These experiments indicated the presence of more than one PHA synthase gene within the genome of Burkholderia sp. However, when total genomic DNA from Burkholderia sp. was used to complement a PHA-negative mutant of Ralstonia eutropha for PHA accumulation, only one PHA synthase gene was obtained resembling the R. eutropha type of PHA synthases, based on amino acid sequence similarity. In addition to the PHA synthase gene, based on high sequence homology, genes encoding a beta-ketothiolase and acetoacetyl-CoA reductase were identified in a gene cluster with the PHA synthase gene. The arrangement of the three genes is quite similar to the R. eutropha poly-beta-hydroxybutyrate biosynthesis operon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call