Abstract

Designing and controlling the interfacial chemistry and microstructure of the carbon fiber is an important step in the surface modification and preparation of high-performance composites. To address this issue, a tannic acid (TA)/polyhedral oligomeric silsesquioxane (POSS) hybrid microstructure, similar to the topological structure, is designed on the fiber surface by one-pot synthesis under mild conditions. Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) show that the functionality and surface roughness of the fiber are significantly broadened. Correspondingly, the tensile strength (TS) of CF-TA/POSS100 and interlaminar shear strength (ILSS) of CF-TA/POSS100-based composites increased by 18 and 34%, respectively. Following that, a failure mechanism study is conducted to demonstrate the interphase structure containing TA/POSS, which is quite critical in optimizing the mechanical performance of the multiscale composites. Moreover, the strategy for the use of TA for constructing a robust coating to replace the traditional modification without affecting the fiber intrinsic strength is an improved design and provides a new idea for the development of high-performance composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.