Abstract

Polyhedral CoOx was synthesized by calcination of Co-based metal-organic framework ZIF-67 and highly dispersed Pt nanoparticles were successfully loaded on CoOx. The catalytic results showed that Ptnano/CoOx had the best activity and stability. As compared with conventional Co3O4, polyhedral CoOx showed more excellent catalytic oxidation performance of toluene, which was related to enhanced oxygen mobility, defective structure and rich active oxygen species provided by Polyhedral CoOx. Moreover, Pt-CoOx metal-support interaction enhanced the dispersion of Pt species and showed more Pt0 ratio. It was reasonable that the gaseous O2 can be activated directly or moved into the catalyst’s surface to form oxygen cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.