Abstract

We prove that any metric surface (that is, metric space homeomorphic to a 2 -manifold with boundary) with locally finite Hausdorff 2 -measure is the Gromov–Hausdorff limit of polyhedral surfaces with controlled geometry. We use this result, together with the classical uniformization theorem, to prove that any metric surface homeomorphic to the 2 -sphere with finite Hausdorff 2 -measure admits a weakly quasiconformal parametrization by the Riemann sphere, answering a question of Rajala–Wenger. These results have been previously established by the authors under the assumption that the metric surface carries a length metric. As a corollary, we obtain new proofs of the uniformization theorems of Bonk–Kleiner for quasispheres and of Rajala for reciprocal surfaces. Another corollary is a simplification of the definition of a reciprocal surface, which answers a question of Rajala concerning minimal hypotheses under which a metric surface is quasiconformally equivalent to a Euclidean domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.