Abstract

The problem of locating optimally the breakpoints in a continuous piecewise-linear approximation is examined. The integral square error E of the approximation is used as the cost function. Its first and second derivatives are evaluated and this allows the application of Newton's method for solving the problem. Initialization is performed with the help of the split-and-merge method [8]. The evaluation of the derivatives is performed for both waveforms and contours. Examples of implementation of both cases are shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.