Abstract

Polygonal approximation is an important issue in pattern recognition and image processing. A new polygonal approximation method using a genetic algorithm is proposed. Genetic algorithms are search algorithms based on the mechanisms of natural selection and natural genetics. The chromosome is used to represent an approximated polygon and is represented by a binary string. Each bit, called gene, represents a curve point. A gene with value 1 indicates that the corresponding curve point is a breakpoint of the approximated polygon. The objective function is defined as the total arc-to-chord deviation between the curve and the polygon. The proposed method is compared to two existing methods proposed by Teh and Chin (1989) and Ansari and Huang (1991). Some experimental results depict the superiority of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.