Abstract

We review briefly the different applications of polygonal mirror (PM) scanning heads in biomedical imaging, with a focus on Optical Coherence Tomography (OCT). This overview of biomedical optical systems that employ PMs include: (i) TD (Time Domain) OCT setups, where PM may be utilized for generating the modulation function of the system without separate translation stages; (ii) FD (Fourier Domain) OCT delay line systems, with PM arrays; (iii) broadband laser sources scanned in frequency, for SS (Swept Source) OCT, with the PM placed in various optical configurations; (iv) OCM (Optical Coherence Microscopy) system with double PMs; (v) 2D PM plus galvanometer-based scanner (GS) for fast lateral scanning (not only in OCT, but also in confocal microscopy). We discuss SSs, for which the various PMbased setups used are compared, in their evolution - from on-axis to off-axis polygons - and in the race to obtain higher scan speeds to achieve real-time <i>in vivo </i>medical imaging. The parameters, advantages and drawbacks of these different configurations are pointed out. A necessary comparison is also made with the much faster Fabry-Perot (FP) based SSs. Our approach on PM-based broadband laser sources scanned in frequency, based on a simple off-axis polygon configuration, is also presented. Some of its characteristic mathematical functions are inferred and evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.