Abstract

The use of synthetic polymers for the delivery of nucleic acids holds considerable promise for understanding and treating disease at the molecular level. This work aims to decipher the cellular internalization mechanisms for a series of synthetic glycopolymer DNA delivery vehicles we have termed poly(glycoamidoamine)s (PGAAs). To this end, we have performed cellular delivery experiments in the presence of pharmacological endocytosis inhibitors. Confocal microscopy analysis showed colocalization of labeled pDNA in polyplexes with immunolabeled endocytic molecules to identify the cellular internalization pathways in HeLa cells. Direct membrane penetration was also investigated through various methods, including cellular energy depletion and leakage of a cytosolic enzyme from the cell. The data suggests that the cellular internalization of PGAA polyplexes occurs through a multifaceted internalization mechanism primarily involving caveolae, yet clathrin-coated vesicles and macropinosomes were also involved to a lesser degree. The primary mechanism that leads to efficient nuclear delivery and transgene expression appears to be caveolae/raft-mediated endocytosis. The cellular internalization pathways for PGAAs were not identical to those for polyethylenimine, illustrating that differences in the chemical structure of materials directly impacts the cellular internalization mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.