Abstract
Nanoparticle (NP) drug delivery systems are known to potentially enhance the efficacy of therapeutic agents. As for antimicrobial drugs, therapeutic solutions against drug-resistant microbes are urgently needed due to the worldwide antimicrobial resistance issue. Usnic acid is a widely investigated antimicrobial agent suffering from poor water solubility. In this study, polymer nanoparticles based on polyglycerol adipate (PGA) grafted with polycaprolactone (PCL) were developed as carriers for usnic acid. We demonstrated the potential of the developed systems in ensuring prolonged bactericidal activity against a model bacterial species, Staphylococcus epidermidis. The macromolecular architecture changes produced by PCL grafted from PGA significantly influenced the drug release profile and mechanism. Specifically, by varying the length of PCL arms linked to the PGA backbone, it was possible to tune the drug release from a burst anomalous drug release (high PCL chain length) to a slow diffusion-controlled release (low PCL chain length). The developed nanosystems showed a prolonged antimicrobial activity (up to at least 7 days) which could be used in preventing/treating infections occurring at different body sites, including medical device-related infection and mucosal/skin surface, where Gram-positive bacteria are commonly involved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.