Abstract

P2-Na2/3Ni1/3Mn2/3O2 (P2-NiMn) is one of the promising positive electrode materials for high-energy Na-ion batteries because of large reversible capacity and high working voltage by charging up to 4.5 V versus Na+/Na. However, the capacity rapidly decays during charge/discharge cycles, which is caused by the large volume shrinkage of ca. 23% by sodium deintercalation and following electric isolation of P2-NiMn particles in the composite electrode. Serious electrolyte decomposition at the higher voltage region than 4.1 V also brings deterioration of the particle surface and capacity decay during cycles. To solve these drawbacks, we apply water-soluble sodium poly-γ-glutamate (PGluNa) as an efficient binder to P2-NiMn instead of conventional poly(vinylidene difluoride) (PVdF) and examined the electrode performances of P2-NiMn composite electrode with PGluNa binder for the first time. The PGluNa electrode shows Coulombic efficiency of 95% at the first cycle and capacity retention of 89% after 50 cycles, whereas the PVdF electrode exhibits only 80 and 71%, respectively. The alternating current impedance measurements reveal that the PGluNa electrode shows a much lower resistance during the cycles compared with the PVdF one. From the surface analysis and peeling test of the electrodes, the PGluNa binder was found to cover the surface of the P2-NiMn particles and suppresses the electrolyte decomposition and surface degradation. The PGluNa binder further enhance the mechanical strength of the electrodes and suppresses the electrical isolation of the P2-NiMn particles during sodium extraction/insertion. The efficient binder with noticeable adhesion strength and surface coverage of active materials and carbon has paved a new way to enhance the electrochemical performances of high-voltage positive electrode materials for Na-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call