Abstract

Brain imaging-derived structural correlates of alcohol involvement have largely been speculated to arise as a consequence of alcohol exposure. However, they may also reflect predispositional risk. In substance naïve children of European ancestry who completed the baseline session of the Adolescent Brain Cognitive Development (ABCD) Study (n=3013), mixed-effects models estimated whether polygenic risk scores (PRS) for problematic alcohol use (PAU-PRS) and drinks per week (DPW-PRS) are associated with magnetic resonance imaging-derived brain structure phenotypes (i.e., total and regional: cortical thickness, surface area and volume; subcortical volume; white matter volume, fractional anisotropy, mean diffusivity). Follow-up analyses evaluated whether any identified regions were also associated with polygenic risk among substance naïve children of African ancestry (n=898). After adjustment for multiple testing correction, polygenic risk for PAU was associated with lower volume of the left frontal pole and greater cortical thickness of the right supramarginal gyrus (|βs| > 0.009; ps < 0.001; psfdr  < 0.046; r2 s < 0.004). PAU PRS and DPW PRS showed nominally significant associations with a host of other regional brain structure phenotypes (e.g., insula surface area and volume). None of these regions showed any, even nominal association among children of African ancestry. Genomic liability to alcohol involvement may manifest as variability in brain structure during middle childhood prior to alcohol use initiation. Broadly, alcohol-related variability in brain morphometry may partially reflect predisposing genomic influence. Larger discovery genome-wide association studies and target samples of diverse ancestries are needed to determine whether observed associations may generalize across ancestral origins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call