Abstract

Rhyolitic domes are commonly regarded as monogenetic volcanoes associated with single, brief eruptions, in contrast to andesitic or dacitic domes that usually show a complex evolution including alternating long periods of growth and explosive destruction. Rhyolitic domes are characterized by short-lived successions of pyroclastic and effusive activity associated with a series of discrete eruptive events that apparently last on the order of years to decades or perhaps up to centuries. Cerro Pizarro, a rhyolitic dome in the eastern Mexican Volcanic Belt, is a relatively small (~ 1.1 km 3), isolated volcano that shows aspects of polygenetic volcanism including long-term repose periods (~ 50–80 ky) between eruptions, chemical variations over time, and a complex evolution of alternating explosive and effusive eruptions, including a cryptodome phase, a sector-collapse event and prolonged erosional processes. This eruptive behavior provides new insights into how rhyolite domes may evolve, in contrast to the traditional models of rhyolitic domes as short-lived, monogenetic systems. A protracted, complex evolution bears important implications for hazard assessment if reactivation of an apparently extinct rhyolitic dome must be seriously considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call