Abstract
Given the universality of autopolyploid species in nature, it is crucial to develop genomic selection methods that consider different allele dosages for autopolyploid breeding. However, no method has been developed to deal with autopolyploid data regardless of the ploidy level. In this study, we developed a modified genomic best linear unbiased prediction (GBLUP) model (polyGBLUP) through constructing additive and dominant genomic relationship matrices based on different allele dosages. polyGBLUP could carry out genomic prediction for autopolyploid species regardless of the ploidy level. Through comprehensive simulations and analysis of real data of autotetraploid blueberry and guinea grass and autohexaploid sweet potato, the results showed that polyGBLUP achieved higher prediction accuracy than GBLUP and its superiority was more obvious when the ploidy level of autopolyploids is high. Furthermore, when the dominant effect was added to polyGBLUP (polyGDBLUP), the greater the dominance degree, the more obvious the advantages of polyGDBLUP over the diploid models in terms of prediction accuracy, bias, mean squared error and mean absolute error. For real data, the superiority of polyGBLUP over GBLUP appeared in blueberry and sweet potato populations and a part of the traits in guinea grass population due to the high correlation coefficients between diploid and polyploidy genomic relationship matrices. In addition, polyGDBLUP did not produce higher prediction accuracy than polyGBLUP for most traits of real data as dominant genetic variance was not captured for these traits. Our study will be a significant promising method for genomic prediction of autopolyploid species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.