Abstract

Good genes theories of sexual selection predict that polygamy will be associated with more efficient removal of deleterious alleles (purifying selection), due to the alignment of sexual selection with natural selection. On the other hand, runaway selection theories expect no such alignment of natural and sexual selection, and may instead predict less efficient purifying selection in polygamous species due to higher reproductive variance. In an analysis of polymorphism data extracted from 150-bird genome assemblies, we show that polygamous species carry significantly fewer nonsynonymous polymorphisms, relative to synonymous polymorphisms, than monogamous bird species (p = .0005). We also show that this effect is independent of effective population size, consistent with the alignment of natural selection with sexual selection and "good genes" theories of sexual selection. Further analyses found no impact of polygamy on genetic diversity, while polygamy in females (polyandry) had a marginally significant impact (p = .045). We also recapitulate previous findings that smaller body mass and greater geographic range size are associated with more efficient purifying selection, more intense GC-biased gene conversion, and greater genetic diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.