Abstract

The preparation of polyfuran–graphene (PFu/GR) and polyfuran–multi-walled carbon nanotube (PFu/MWCNT) nanocomposites was carried out via a plasma polymerization. The characterizations of the pure GR, MWCNTs and the nanocomposites coated with PFu were performed using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy analyses. Counter electrodes prepared using the nanocomposites were used in dye-sensitized solar cells (DSSCs), demonstrating an enhancement in cell performance. The maximum efficiency of the DSSC with the PFu/GR counter-electrode with a short-circuit photocurrent density of 32.26 mA/cm2 was 5.06%, which is much higher than that of the short-circuit photocurrent density of 14.11 mA/cm2 and efficiency of 2.13% in the cell using the GR counter electrode. This was attributed to the enhanced conductivity between the PFu-based counter electrode and the electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.