Abstract

Salen-porphyrin-based conjugated microporous polymers(CMPs) have been demonstrated to be an attractive material platform for predesigned structures and promising applications. Herein, a new salen-porphyrin-based conjugated microporous polymer(SP-CMP-L) was solvothermally prepared by porphyrin-forming condensation reaction of pyrrole and salen-dialdehyde derivative. The SP-CMP-L was characterized by spectroscopy technologies, and also exhibited excellent thermal and chemical stability. The porosity of SP-CMP-L was examined by N2 adsorption/desorption isotherms. The BET specific surface area of the CMP material was calculated to be 290.4 m2/g with the pore volume of 0.19 cm3/g. The microstructure property of the resulting material was further evaculated by scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The SP-CMP-L with salen and porphyrin multidentate coordination sites was proposed to serve as an initiator to promote the cross-coupling between aryl halides with unactivated arenes under base-mediated conditions. The transition-metal-free catalytic protocol provided high catalytic activity for direct C-H arylation reaction of unactivated arenes, and thus offered a convenient and efficient alternative for the construction biaryl scaffolds. In addition, the salen-porphyrin-based CMP material possessed remarkable adsorption capability for the removal of organic amines from water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.