Abstract

Although polyethylenimine (PEI) has been widely used as a nonviral vector, there is little mechanistic understanding on PEI-mediated delivery. Here, we studied whether the expression of murine interleukin-2 (mIL-2) plasmids could be improved by complexation with PEI at various N/P ratios, and whether the cellular uptake, nuclear translocation, and retention of plasmids could be affected by the N/P ratios. Compared with the naked mIL-2, PEI/mIL-2 complexes showed at least two orders of magnitude higher expression at Raw264 cells in the N/P ratio-dependent manner. PEI-mediated cellular uptake and nuclear trafficking of plasmids, quantitated by competitive polymerase chain reaction, also depended on the N/P ratios showing the highest cell and nuclear levels of plasmids at 10/1. The higher cellular levels of plasmid DNA after PEI-mediated delivery were also observed in other cell lines. Unlike naked plasmids, PEI/mIL-2 complexes (N/P ratios >/=4/1) showed prolonged cellular and nuclear retention of mIL-2 plasmids. The nuclear translocation and higher cellular level of plasmids given in PEI complexes were similarly observed by fluorescence microscopy. Moreover, PEI/mIL-2 complexes revealed high stability against DNase I, partly explaining the prolonged subcellular retention. These results indicate that the expression of plasmid mIL-2 might be highly enhanced by complexation with PEI and that such increased expression could be attributed by the higher cellular uptake, nuclear translocation and prolonged retention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.