Abstract

Over the last years significant progress has been made in non-viral gene delivery mediated by cationic liposomes. However, the results obtained are still far from being satisfactory regarding transfection efficiency, particularly when compared to that achieved using viral vectors. We have previously demonstrated that association of transferrin with cationic liposomes significantly improves transfection in a large variety of cells, both in vitro and in vivo. In this work, several strategies have been explored in order to further improve transfection mediated by transferrin-associated lipoplexes. To this regard, the effect on transfection of pre-condensation of DNA with polyethylenimine of low MWs (2.7, 2.0 and 0.8 KDa) at various N/P ratios, lipid composition, cationic lipid/DNA (+/-) charge ratio and the presence of a surfactant in the lipoplexes was investigated. Two different modes for preparing the liposomes were tested and the extent of cell association of their complexes with DNA as well as their capacity to protect the carried DNA were evaluated. Our results show that complexes generated from cationic liposomes prepared by the ethanol injection method in which the carried DNA was pre-condensed with low MW polyethylenimine are highly efficient in mediating transfection. The differential modulating effect observed upon association of transferrin to various liposome formulations on transfection mediated by the polyethylenimine-complexes suggests that these complexes enter into the cells through different pathways (involving clathrin versus caveolin), most likely by taking advantage of their intrinsic biophysical properties to escape from the endosome to the cytosol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.