Abstract

In recent years, the development of electrochemically active materials with excellent lithium storage capacity has attracted tremendous attention for application in high-performance lithium-ion batteries. MnO2-based composite materials have been recognized as one of promising candidates owing to their high theoretical capacity and cost-effectiveness. In this study, a previously unrecognized chemical method is proposed to induce intra-stacked assembly from MnO2 nanorods and graphene oxide (GO), which is incorporated as an electrically conductive medium and a structural template, through polyethylenimine (PEI)-derived electrostatic modulation between both constituent materials. It is revealed that PEI, a cationic polyelectrolyte, is capable of effectively forming hierarchical, two-dimensional MnO2-RGO composites, enabling highly reversible capacities of 880, 770, 630, and 460 mA·h/g at current densities of 0.1, 1, 3, and 5 A/g, respectively. The role of PEI in electrostatically assembled composite materials is clarified through electrochemical impedance spectroscopy-based comparative analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.