Abstract

Polycations as one of non-viral vectors have gained increasing attentions. In this paper, polyethylenimine(PEI)-grafted polycarbonates (PMAC-g-PEIx) were synthesized as a kind of biodegradable polycations for gene delivery. Backbone polymer, poly(5-methyl-5-allyloxycarbonyl-trimethylene carbonate) (PMAC), was synthesized in bulk catalyzed by immobilized porcine pancreas lipase (IPPL). Then, PMAC–O, the allyl epoxidation product of PMAC, was further modified by PEIx with low molecular weight (x = 423, 800 and 1800). The MWs of PMAC-g-PEIx, measured by GPC–MALLS, were 81,900, 17,9900 and 200,600 g/mol with polydispersities of 1.2, 1.4 and 1.7, respectively. PMAC-g-PEIx could form positively charged nano-sized particles (30–90 nm) with pDNA, and all the three PAMC-g-PEIx/DNA polyplexes had similar buffer capabilities. In vitro experiments demonstrated that the PAMC-g-PEIx showed much low cytotoxicity and enhanced transfection efficiency could be found in comparison with PEI25K in 293T cells. Furthermore, pre-incubation of PMAC-g-PEI1800 showed a weakening binding capacity with DNA. The biodegradability of PMAC-g-PEIx can facilitate the efficient release of pDNA from polyplexes and reduce cell cytotoxicity. These results suggested that PMAC-g-PEIx would be a promising non-viral biodegradable vector for gene delivery system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call