Abstract
The development of an adsorbent with high adsorption ability and favorable cyclic regeneration performance for the removal of nitrate residues from wastewater is a task of vital importance. To this end, polyacrylonitrile fiber (PANF) was modified with polyethyleneimine (PEI), and alkyl groups were then introduced around the active amine groups to prepare three polymer-based anion exchange fibers (PAN-PEI-3C, PAN-PEI-5C, and PAN-PEI-8C). The novel fibers were characterized using techniques such as scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The adsorption isotherms of the fibers were best fitted by the Langmuir model, and PAN-PEI-5C exhibited a higher adsorption amount of nitrate (31.32 mg/g) than the other adsorbents. The equilibrium was reached expeditiously (within 10 min), and both pseudo-first-order and pseudo-second-order models could well describe the adsorption kinetics. More attractively, the saturated PAN-PEI-5C could be eluted using a low-concentration (0.3 M) NaCl solution, without any sharp loss of adsorption amount for five consecutive cycles in the presence of dissolved organic matter (DOM). Furthermore, PAN-PEI-5C could effectively adsorb low-concentration nitrate from real secondary effluents in a fixed-bed column experiment. Our work provides a promising and low-cost material for the removal of nitrate residues in practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.