Abstract
A typical nanoporous-geomaterial (halloysite nanotubes, HNTs) was functionalized by polyethyleneimine (PEI) grafting and the functionalized halloysite (PEI-HNTs) exhibited excellent performance for Cr (VI) removal from aqueous solution and immobilization by reduction. After PEI modification, the Cr (VI) uptake capacity of PEI-HNTs was about 64 times higher than that of the original HNTs and the maximum equilibrium removal capacity was found to be 102.5 mg g−1 at 328 K. Part of Cr (VI) was reduced to Cr (III) and then precipitated on the surface of adsorbent during the sorption process as determined by X-ray photoelectron spectroscopic analysis, suggesting that the PEI-HNTs are not only useful for Cr (VI) immobilization but also good for its reduction. The adsorption of Cr (VI) by the PEI-HNTs was fitted to Langmuir model and the kinetics of uptake could be described by a pseudo-second-order rate model very well. The results also demonstrated that PEI-HNTs could detoxify Cr (VI) at low pH value. The mechanism of uptake of Cr (VI) was postulated to be electrostatic interaction followed by its immobilization through reduction. The functionalized nano-geomaterial synthesized here could be a promising candidate of low cost for highly efficient Cr (VI) removal followed by its immobilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.