Abstract

Activated carbon paper-based materials were prepared from softwood pulp, activated carbon powder, and polyester fiber through wet forming process. Then polyethyleneimine was loaded on the activated carbon paper-based materials using physical impregnation method to fabricate green, low cost, and degradable PEI/activated carbon composite paper-based adsorbent materials (PPCA) for the removal of Cr(VI) from drinking water. The surface characteristics of the adsorbent were analyzed by SEM, EDX, BET, FT-IR, and XPS. It was found that the maximum adsorption capacity of Cr(VI) could reach up to 1.58 mg g−1 when the PEI immersion concentration is 1%, the contact time is 180 min, the temperature is 30 °C and pH = 2. The adsorption of Cr(VI) on PPCA conformed to both the freundlich isotherm model and the quasi-second-order kinetic model, indicating that the adsorption was multi-molecular layer adsorption controlled by chemical reaction process. The adsorption mechanism of Cr(VI) on PPCA included electrostatic attraction, redox and chelation. Overall, this study provides a green, large-scalable production way for the preparation of biodegradable adsorption materials for the efficient removal of Cr(VI) from drinking water aiding the safe management of aqueous system.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call